
A MEMORY EFFICIENT PARALLEL TRIDIAGONAL SOLVER

TRAVIS M. AUSTIN†, MARKUS BERNDT†, AND J. DAVID MOULTON†

Abstract. We present a memory efficient parallel algorithm for the solution of tridiagonal
linear systems of equations that are diagonally dominant on a very large number of processors. Our
algorithm can be viewed as a parallel partitioning algorithm. We illustrate its performance using
some examples. Based on this partitioning algorithm, we introduce a recursive version that has
logarithmic communication complexity.

Key words. parallel partition method, tridiagonal linear systems, parallel linear algebra

AMS subject classifications. 15A06, 65F05, 65F50, 65Y05

1. Introduction. Large tridiagonal systems of linear equations appear in many
numerical analysis applications. In our work, they arise in line relaxations needed by
robust multigrid methods for structured grid problems [6, 7, 12]. Using this as our
motivation, we present a new memory efficient partitioning algorithm for the solution
of diagonally dominant tridiagonal linear systems of equations. This partitioning
algorithm is well suited for distributed memory parallel computers. For simplicity, we
assume in this paper that each processor has roughly the same number of subsequent
rows of the tridiagonal system, and the number of processors NP is strictly less than
the number of unknowns N . Note however that our algorithm can be applied to the
case NP = N .

On a serial computer, Gaussian elimination without pivoting can be used to solve
a diagonally dominant tridiagonal system of linear equations in O(N) steps. This
algorithm, first described in [15], is commonly referred to as the Thomas algorithm.
Unfortunately, this algorithm is not well suited for parallel computers. The first
parallel algorithm for the solution of tridiagonal systems was developed by Hockney
and Golub and described in 1965 in [9]. It is now usually referred to as cyclic reduction.
Stone introduced his recursive doubling algorithm in 1973 [13]. Both cyclic reduction
and recursive doubling are designed for fine grained parallelism, where each processor
owns exactly one row of the tridiagonal matrix. In 1981, Wang proposed a partitioning
algorithm that is aimed at more coarse-grained parallel computation, where NP << N
[17] . Diagonal dominance of the resulting reduced system in Wang’s method was
established in [16] and numerical stability of Wang’s algorithm was analyzed in [18].
A unified approach for the derivation and analysis of partitioning methods is given in
[1, 2]. There has also been attention directed towards a parallel partitioning of the
standard LU algorithm. In 1986, Sun et al. [14] introduced the parallel partitioning
LU algorithm that is very similar to Bondeli’s divide and conquer algorithm [4].

For both partitioning algorithms and divide and conquer algorithms, a reduced
tridiagonal system of interface equations must be solved. Each processor owns only a
small number of rows in this reduced system. As an example, in Wang’s partitioning
algorithm each processor owns one row of the reduced system. In [10], this reduced
system is solved by recursive doubling. However, numerical experiments were per-
formed only on very small numbers of processors. We target parallel computers with
thousands to tens of thousands of processors, such that for a 2D structured grid, line

†Mathematical Modeling and Analysis Group, Theoretical Division, Mail Stop B284, Los Alamos
National Laboratory, Los Alamos, NM 87545, Email: {taustin,berndt,moulton}@lanl.gov. Supported
by the U.S. Department of Energy, under contract W-7405-ENG-36. LA-UR-04-4149.

1



2 T. M. AUSTIN, M. BERNDT, J. D. MOULTON

solves spanning hundreds of processors are realistic.
In the remainder, we proceed as follows. In the next section, we describe in

more detail our motivation for introducing a new memory efficient parallel tridiagonal
solver. Section 3 contains an overview of the existing parallel tridiagonal solvers with
their storage requirements in the context of line relaxation. The main section is
Section 4, where we describe our new memory efficient parallel tridiagonal solver. We
present detailed timing and efficiency results for our line relaxation in Section 5. This
section is followed by a description of our recursive partitioning algorithm and an
analysis of its complexity. We end with concluding remarks.

2. Motivation. Multigrid methods gained recognition in the late 1970’s as an
efficient algorithm for the solution of the discrete linear systems that arise from models
of diffusive phenomena (e.g., heat conduction, neutron diffusion, single-phase satu-
rated flow). These methods achieve their efficiency through the recursive use of succes-
sively coarser discrete problems in conjunction with smoothing on each level to damp
the highly oscillatory errors associated with each grid. Unfortunately, early multigrid
algorithms were fragile, with their efficiency strongly dependent on the variability of
the model’s coefficients.

Considerable research in the early 1980’s [6, 8] led to the first multigrid algorithms
that could be used reliably for a large class of practical problems. The key to the
success of these robust Black Box methods, was the use of the fine-scale discrete oper-
ator to construct, through a variational principle, the successively coarser coarse-grid
operators. To achieve robustness in this variational coarsening approach, line relax-
ation in 2D and plane relaxation in 3D are a necessary ingredient. In practice, plane
relaxation is performed by using one cycle of a 2D variational coarsening multigrid
code. As a result, in both 2D and 3D, the computational workhorse of these multi-
grid methods is line relaxation, or in other words, the solution of tridiagonal linear
systems.

Fig. 2.1. Example of a parallel structured grid, dashed lines indicate processor boundaries.
Line relaxations in x-direction along lines of the same color are independent of each other and can
be performed simultaneously on the bottom and the top group of three processors.

The original black box multigrid code developed by Dendy in the 1980’s was for
serial computers [6]. Recently, the authors have implemented an MPI-based version
for both 2D and 3D structured grid problems [3]. Just as with its serial counterpart,
the workhorse for both versions of the parallel code is line relaxation. Therefore, an



A MEMORY EFFICIENT PARALLEL TRIDIAGONAL SOLVER 3

efficient parallel version of black box multigrid demands an efficient parallel version
of line relaxation. We also note that Brown et al. in [5] describe a similar paral-
lel multigrid algorithm whose efficiency also depends on the existence of a fast line
relaxation.

In the black box multigrid code, we consider discretizations of elliptic systems
that yield nine-point stencils (in 2D) or 27-point stencils (in 3D) on structured grids.
In 2D, a relaxation of a single line in either the x- or y-direction is set up by keeping
all unknowns, except the ones along the line, at their current value, and solving for
the unknowns along the line in a block fashion. Since we limit ourselves to nine point
stencils in 2D, this block solve yields a tridiagonal system of linear equations. By
introducing the well known two-color zebra coloring of all lines of a particular direction
(see Figure 2.1), we ensure that lines residing on different groups of processors can be
relaxed simultaneously. After all lines of one color are relaxed, we switch to the other
color in the same direction, and then perform the same procedure for all lines in the
other coordinate direction.

In 3D, we use a two-color zebra coloring of all xy-, yz-, and xz-planes, and perform
a single 2D black box multigrid cycle for each plane of the same color in one direction,
and then one cycle for each plane of the other color in the same direction. We do the
same for the planes in the remaining two directions. Since in each plane relaxation step
many line relaxation steps are performed, it is paramount for the parallel performance
of the black box multigrid code that tridiagonal solves are performed efficiently in
parallel.

3. Overview of parallel tridiagonal solvers. The Thomas algorithm is a
very efficient algorithm for solving tridiagonal systems of equations in serial [15].
It is equivalent to Gaussian elimination without pivoting; therefore, it is inherently
serial in the sense that that its communication has a complexity of O(NP ). In the
context of alternating line relaxation, one can alleviate this problem by relaxing lines
in the alternate direction once a processor is idle [11]. This procedure is only efficient,
though, when a large number of successive alternating line relaxations are performed.
In the context of a multigrid method, where only one or two sweeps of alternating
line relaxation are needed on each level, the Thomas algorithm is simply impractical
in a parallel setting.

Cyclic reduction was first introduced in 1965 by Hockney and Golub [9]. If we
number equations succesively, then in cyclic reduction the odd-neighbor equations of
an even equation are used to eliminate the off-diagonal entries in the even equation.
In this step, a tridiagonal system of linear equations for the even equation is gener-
ated. This reduced system has only about one-half as many equations as the original
system. Now the same procedure is applied recursively to the reduced system until
there remains only one linear equation with one unknown. The solution of successive
reduced systems can be computed to finally yield the solution of the original system.

Cyclic reduction requires 2 ∗ log2 NP steps of nearest neighbor communication.
Additionally, storage requirements can be held to a minimum by overwriting the origi-
nal tridiagonal system with all reduced systems of equations. Since the line relaxations
needed by the robust black box multigrid method require the same tridiagonal system
of equations with different right-hand sides, one cannot overwrite the original system
of equations. As a result, additional storage of one-half times the storage of the orig-
inal tridiagonal system is needed in the context of line relaxation. An example of an
implementation of parallel cyclic reduction is the parallel semicoarsening multigrid
code described in [5].



4 T. M. AUSTIN, M. BERNDT, J. D. MOULTON

Recursive doubling was introduced in 1973 by Stone [13].
Wang introduced a new partitioning algorithm in 1981 [17]. The basic idea is that

a tridiagonal interface of NP linear equations is generated without communication.
Each processor owns one equation of this interface system. After solving the interface
system of equations a back substitution step generates the solution. In the context
of line relaxation, to generate an interface equation, storage for one local tridiagonal
system and the right hand side is needed. The parallel solution of the small interface
system can, for example, be done using parallel cyclic reduction. In this paper, we
present a new partitioning algorithm that is more memory efficient, and based on it,
a recursive version that has logarithmic communication complexity.

The divide and conquer algorithm introduced by Bondeli in 1991 [4] consists of
inverting the tridiagonal systems that reside on each processor, by disregarding the
connections to neighbor processors. Similar to partitioning algorithms, this also yields
a interface system of equations that must be solved in parallel, for example, by cyclic
reduction. The storage requirement for this divide an conquer algorithm is about
twice the storage of a tridiagonal system.

In the context of line relaxation in a multigird method, it is desirable to min-
imize the number of messages that are sent between processors. Two color zebra
relaxation is well suited for this purpose, since lines of the same color can be relaxed
simultaneously, and therefore the number of messages is greatly reduced.

4. The memory efficient partitioning algorithm. We now describe our
memory efficient algorithm for the parallel solution of tridiagonal systems of linear
equations. We are interested in solving the linear system

Ax = b, (4.1)

where A ∈ <N×N is a tridiagonal matrix. To simplify the presentation of our algo-
rithm, we denote by vi ∈ <N the ith row vector of A such that

A =

 vt
1
...

vt
N

 . (4.2)

Note that for each vi = (vi,1, vi,2, . . . , vi,N )t we have vi,j = 0, for j 6= i−1, i, i+1. Our
algorithm is designed to work for diagonally dominant tridiagonal matrices. Thus, we
assume that

vi,i > |vi,i−1|+ |vi,i+1|, i = 1, . . . , N, (4.3)

where we set v1,0 = vN,N+1 = 0. We assume that there are NP < N processors and
that each processor has a unique index or rank. We denote by jk the smallest row
number such that row jk is owned by processor k. We assume that j1 = 1, jNP +1 =
N + 1, and jk < jk+1 for k = 1, . . . , NP . Hence, processor k owns Nk = jk+1 − jk

rows. Matrix A is assumed to be distributed over all processors such that processor
k owns rows jk, . . . , jk+1 − 1, for k = 1, . . . , NP .

The first phase. First, each processor computes a linear combination of its
rows to generate the lower interface equation. We store this row in vlk and the
corresponding right hand side in blk . We perform the following steps simultaneously
on all processors.

1. Set v(jk+1)
lk

← vjk+1 and b
(jk+1)
lk

← bjk+1.



A MEMORY EFFICIENT PARALLEL TRIDIAGONAL SOLVER 5

2. For i = jk + 2, . . . , jk + Nk − 1,

αi ← vi,i−1/vlk,i−1

v(i)
lk
← vi − αiv

(i−1)
lk

b
(i)
lk
← bi − αib

(i−1)
lk

.

Here the superscript denotes the iterate. Then each processor computes a linear
combination of its rows to generate the upper interface equation. Analogous to the
previous steps, the resulting row is stored in vuk

with the corresponding right hand
side being stored in buk

. The following steps are performed simultaneously on all
processors.

1. Set v(jk+Nk−2)
uk ← vjk+Nk−2 and b

(jk+Nk−2)
uk ← bjk+Nk−2.

2. For i = jk + Nk − 3, . . . , 1,

βi ← vi,i+1/vuk,i

v(i)
uk
← vi − βiv(i+1)

uk

b(i)
uk
← bi − βib

(i+1)
uk

.

During the entire computation, both v(i)
lk

and v(i)
uk have at most three non-zero

entries. In iteration i, for the lower interface row v(i)
lk

, these are vlk,jk
, vlk,i, and vlk,i+1,

while for the upper interface row v(i)
uk , these are vuk,jk+Nk−1, vuk,i, and vuk,i−1. In an

implementation, we only need storage for these three values for both upper and lower
interface row.

The second phase. The resulting interface system can be written as
vt

u1

vt
l1
...

vt
uNP

vt
lNP




xj1

xj2−1

...
xjNP

xjNP +1−1

 =


bu1

bt
l1
...

bt
uNP

bt
lNP

 . (4.4)

Note that interface system (4.4) is tridiagonal, and that for a given k the rows with
index uk and lk reside on processor k.

To solve the interface system, we can simply gather the entire system to one of
the processors, where we solve it using the sequential Thomas algorithm. Then we
send the solution back to the individual processors: Processor k receives xjk−1, xjk

,
xjk+1−1, and xjk+1 , for k = 2, . . . , NP − 1. Processor 1 receives xj1 , xj2−1, and xj2 ,
and processor NP receives xjNP

−1, xjNP
, and xjNP +1−1.

The third phase. After substituting the received solution values simultane-
ously on each processor, we can immediately solve for unknowns xjk+1 and xjk+1−1.
What remains on each processor is a tridiagonal system of equations for unknowns
xjk+2, . . . , xjk+1−2 that can be solved using the sequential Thomas algorithm.

Our algorithm can be interpreted as a partitioning algorithm. After completion
of phase one, row vector vlk is a linear combination of row vectors vjk+1, . . . ,vjk+1−1,
and vuk

is a linear combination of row vectors vjk
, . . . ,vjk+1−2. If we replace row

vector vjk
and vjk+1−1 with row vectors vuk

and vlk , respectively for k = 1, . . . , NP ,
we obtain the partitioned matrix Ã. In Figure 4.1, we show the sparsity pattern of a
partitioned matrix, with parameters N = 15, NP = 3, and Nk = 5, k = 1, 2, 3.



6 T. M. AUSTIN, M. BERNDT, J. D. MOULTON

Ã =



■ ■
✖ ✖ ✖

✖ ✖ ✖
✖ ✖ ✖

■ ■ ■

■ ■ ■
✖ ✖ ✖

✖ ✖ ✖
✖ ✖ ✖

■ ■ ■

■ ■ ■
✖ ✖ ✖

✖ ✖ ✖
✖ ✖ ✖

■ ■


Fig. 4.1. Sparsity pattern of a partitioned matrix: non-zero entries marked with ✖ are equal

to the corresponding entries in the original tridiagonal matrix, non-zero entries marked with ■ are
computed in phase one of the partitioning algorithm. Horizontal lines indicate processor boundaries.

Theorem 4.1. If the matrix in (4.1) is tridiagonal and diagonally dominant with
positive diagonal entries, then so is the interface system (4.4).

Proof. The proof is by induction. We first prove that v(i)
lk

has at most three
non-zero entries in positions jk, i, and i + 1, for all i = jk + 1, . . . , jk + Nk − 1. The
statement is certainly true for i = jk +1, since v(jk+1)

lk
equals row jk +1 of matrix A.

We assume that v(i−1)
lk

has at most three non-zero entries in positions jk, i − 1, and
i. We know that vi has at most three non-zero entries in positions i− 1, i, and i + 1.
Since v(i)

lk
is a linear combination of v(i−1)

lk
and vi, and αi is chosen such that

v
(i)
lk,i−1 = vi,i−1 − αivlk,i−1 = 0, (4.5)

we conclude that v(i)
lk

can have non-zero entries only in positions jk, i, and i+1. As a
result, the lower interface equation can have non-zero coefficients only in positions jk,
jk+1 − 1, and jk+1, for k = 1, . . . , NP − 1. The lower interface equation on processor
NP , has at most two non-zero entries, since entry jNP +1 does not exist.

Now we show that the diagonal element in the lower interface equation on pro-
cessor k is positive and that the lower interface equation on processor k is diagonally
dominant. Both statements are certainly true for i = jk + 1, since v(jk+1)

lk
equals row

jk + 1 of matrix A. Assuming that v
(i−1)
lk,i−1 > |v(i−1)

lk,jk
|+ |v(i−1)

lk,i |, we must show that

v
(i)
lk,i = vi,i − αiv

(i−1)
lk,i > 0. (4.6)



A MEMORY EFFICIENT PARALLEL TRIDIAGONAL SOLVER 7

Using diagonal dominance of v(i−1)
lk

and vi, and v
(i−1)
lk,i−1 > 0, we show

v
(i−1)
lk,i−1vi,i − vi,i−1v

(i−1)
lk,i >

(
|v(i−1)

lk,jk
|+ |v(i−1)

lk,i |
)

(|vi,i−1|+ |vi,i+1|)− vi,i−1v
(i−1)
lk,i

≥ |v(i−1)
lk,jk

||vi,i−1|+ |v(i−1)
lk,jk

||vi,i+1|+ |v(i−1)
lk,i ||vi,i+1|

≥ 0,

which establishes (4.6). We now show diagonal dominance of v(i)
lk

, which is equivalent
to

v
(i−1)
lk,i−1vi,i − vi,i−1v

(i−1)
lk,i > |v(i−1)

lk,jk
vi,i−1|+ |vi,i+1v

(i−1)
lk,i−1|. (4.7)

Using diagonal dominance of vi and v(i−1)
lk

, we show

vi,i−1v
(i−1)
lk,i + |v(i−1)

lk,jk
vi,i−1|+ |vi,i+1v

(i−1)
lk,i−1|

≤ |vi,i−1v
(i−1)
lk,i |+ |v

(i−1)
lk,jk

vi,i−1|+ |vi,i+1v
(i−1)
lk,i−1|

= |v(i−1)
lk,i |

(
|vi,i−1|+ |v(i−1)

lk,jk
|
)

+ |vi,i+1v
(i−1)
lk,i−1|

< |v(i−1)
lk,i v

(i−1)
lk,i−1|+ |vi,i+1v

(i−1)
lk,i−1|

= |v(i−1)
lk,i−1|

(
|v(i−1)

lk,i |+ |vi,i+1|
)

< v
(i−1)
lk,i−1vi,i,

which establishes (4.7).
The proof for vuk

is analogous.
We remark that Theorem 4.1 implies that phase one of our algorithm is numeri-

cally stable, since at any time in the iterations v(i)
lk

and v(i)
uk are diagonally dominant.

Clearly, both phase two and three are stable, since the stable Thomas algorithm is
used.

In phase one of the algorithm, only six variables are needed to compute the
interface equations on each processor. Note that the original tridiagonal system is
not modified in this step. In the context of two-color zebra line relaxation in a
multigrid method, the tridiagonal system does not need to be strored at all since the
2D matrix can be used directly to generate the interface equations. In contrast to
Wangs’s partitioning algorithm, our algorithm does not require additional storage for
a modified right hand side in phase one. In phase two, 4NP variables are needed on one
of the processors to store one interface system, in addition to storing the coefficients
of the complete interface tridiagonal system. In phase three of our algorithm, we
need storage for one tridiagonal system, and we use the original right hand side. In
the context of two-color zebra line relaxation, storage for one tridiagonal system of
equations is enough. Since in phase three of our algorithm the original tridiagonal
system is used, its coefficients can be taken directly from the 2D matrix.

5. Examples. In Figure 5.1, we show timings for 20 V (1, 1) cycles of symmetric
BoxMG with alternating line relaxation. Here the problem size on the finest grid is
fixed on all processors at 1000 × 1000. All timings are obtained on square processor
grids, from 2×2 through 22×22 processors. The discrete problem was Poisson’s equa-
tion with the standard five-point stencil discretization. We observe a slight growth
in the time per V-cycle in both the aggregate time as well as the time just for line



8 T. M. AUSTIN, M. BERNDT, J. D. MOULTON

aggregate time for line relaxation
total time for BoxMG

number of processors

se
co

nd
s

5004003002001000

16

14

12

10

8

6

4

2

0

Fig. 5.1. Timings for 20 V (1, 1) BoxMG cycles with red-black line relaxation on square pro-
cessor grids ranging from 2× 2 to 22× 22.

relaxation. Note that for the largest problem, lines span at most 22 processors. In
the following, we consider lines that span significantly more processors.

Denote by T (N,M,NP ) the time it takes to perform our line relaxation algorithm
for a system of equations with N unknowns on NP processors for M lines. The scaled
efficiency is then defined as

E(N,M,P ) ≡ T (N,M, 1)/T (NP N,M,NP ) (5.1)

Figure 5.2 shows the scaled parallel efficiency of our line relaxation implementation for
N = 1000 ∗NP and M = 500. We see a slow degradation of scaled parallel efficiency
to about 30% for NP = 250. Note that the interface problem is a tridiagonal system
with 2 ∗NP unknowns and that M of such interface problems must be solved. Since
we gather all these equations on one of the processors and solve this interface system
using the Thomas algorithm, our algorithm has a linear dependence on NP . However,
we propose a recursive algorithm that is based on our partitioning algorithm: this
algorithm reduces the dependency to a logarithmic dependence on P .

Figure 5.3 shows detailed timings for the different phases of our algorithm. As
expected, the calculation of the right hand side, phase 1, and phase 3 scale perfectly
because no communication occurs. The complexity of phase 2 is linear in NP .

In Figure 5.4, we show detailed timings for all parts of phase two of our algorithm.
As expected, the complexity of each part of phase two appears to depend linearly on
NP . The scatter operation has the strongest dependence on NP .

In the next section, we propose a recursive version of our partitioning algorithm.
This recursive partitioning algorithm will exhibit only logarithmic dependence on NP .

6. The recursive partitioning algorithm. For very large number of proces-
sors, the solution time for our parallel tridiagonal solver is dominated by the two
communication steps in phase 2: scatter and gather. Our numerical experiments



A MEMORY EFFICIENT PARALLEL TRIDIAGONAL SOLVER 9

efficiency of line relaxation

number of processors

pa
ra

lle
l
effi

ci
en

cy

25020015010050

1

0.8

0.6

0.4

0.2

0

Fig. 5.2. Scaled linear efficiency on of the line relaxation for N = 1000NP and M = 500

phase 3
phase 2
phase 1

RHS calculation
aggegate time for line relaxation

number of processors

se
co

nd
s

25020015010050

25

20

15

10

5

0

Fig. 5.3. Detailed timings for all parts of our partitioning algorithm for N = 1000NP and
M = 500.

show that the scatter operation has a complexity of O(NP ), while the gather opera-
tion has a slightly better complexity.

To alleviate this problem, we propose a recursive version of our partitioning al-
gorithm. Since the interface system of equations is tridiagonal, diagonally dominant
with positive diagonal entries, we solve using our partitioning algorithm. We do this
by combining groups of interface equations on one processor. To be specific, we se-



10 T. M. AUSTIN, M. BERNDT, J. D. MOULTON

solve interface system
scatter
gather

phase 2

number of processors

se
co

nd
s

25020015010050

25

20

15

10

5

0

Fig. 5.4. Detailed timings for all parts of phase two for N = 1000NP and M = 500.

lect MP groups of subsequent processors in such a way that there are roughly equal
numbers of processors in each group. This can, for example, be accomplished by
defining

Mk ≡ bNP /MP c, k = 1, . . . , NP − 1
MMP

≡ NP − (MP − 1)bNP /MP c,

and assigning processors
∑k−1

i=1 Mi+1 through
∑k

i=1 Mk to group k, for k = 1, . . . ,MP .
After each processor has generated its two interface equations (phase one of our

algorithm), these interface equations are gathered to the processor of lowest rank in
the group. We call this processor the base processor in its group. This base processor
now owns the part of the interface tridiagonal linear system that was generated in its
group.

If the number of groups is larger than Mk, we can proceed recursively by dividing
the set of all base processors in several groups of roughly equal size Mk. Then each
of the base processors generates two interface equations from its part of the interface
tridiagonal linear system, and so forth

After solving the interface system, the solution must be sent from the processor
with lowest rank to all other processors in each group. This can be accomplished by
using a scatter operation that involves all processors in each group. Since each pro-
cessor is a member of only one group, all groups can perform these scatter operations
simultaneously. Now we can proceed with phase three of our partitioning algorithm.

Table 6.1 illustrates this coarsening procedure using 18 processors and a group
size of at most three. Suppose that we are given a tridiagonal linear system of equa-
tions that is distributed across 18 processors (row A). Each processor runs through
phase one of the non-recursive algorithm to generate two interface equations. Groups
of three successive processors (row B) gather these interface equations to the low-
est rank processor in their group (row C). In this example, now each of the lowest



A MEMORY EFFICIENT PARALLEL TRIDIAGONAL SOLVER 11

A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 1 4 7 10 13 16

D 1 4 7 10 13 16

E 1 10

F 1 10

G 1
Table 6.1

Illustration of the coarsening procedure for 18 processors and a group size of three.

rank processors owns six equations of the first level interface tridiagonal system of
equations. Processors 1, 4, 7, 10, 13, and 16 then each generate two new interface
equations using their part of the first level interface tridiagonal system. Now the low-
est rank processors are grouped in successive groups of three (row D) and gather the
two interface equations that were just generated to the lowest rank processor in each
group (row E) to form the second level interface tridiagonal system. Processors 1 and
10 make up just one group (row F) and each own a part of this second level interface
tridiagonal system. Each of these two processors proceed to generate two interface
equations from it, which are then gathered to processor 1, the lowest rank processor
in this group, to form the third level interface tridiagonal system. This small linear
system is solved directly (row F).

The solution to the third level interface problem is now scattered to all processors
in the group (row F) and used to compute the solution to the second level interface
problem. The solution of the second level interface problem can now be computed
(row E) and scattered to all processors in the level two groups (row D). This solution
to the second level interface system is now used to compute the solution to the first
level interface problem (row C), which is then scattered to all processors in the level
one groups (row B). Now each processor knows the solution to the first level interface
problem and can solve its part of the original problem.

Since communication is orders of magnitude slower than computation, it is de-
sirable to create groups with enough processors to balance communication and com-
putation. The group size, for which the best performance is achieved, depends on
the target computing architecture and must be determined experimentally for a given
parallel computer. In the next section, we present a complexity analysis that can aid
in determining the optimal group size.

7. Complexity analysis. Our numerical experiments indicate that the time
for a scatter operation grows linearly with the number of participating processors.
The gather operation also appears to scale linearly, albeit with a smaller slope. All
three phases of our algorithm, without taking into account the communication, also
scale linearly. Denote by L the number of lines that must be solved on a given set
of processors to complete a sweep of line relaxation (e.g., the black lines) Denote by
Nkmax

= maxk=1,...,Np
Nk the maximum number of equations that a single processor

owns. Also, denote by γ, σ, and ρi, i = 1, 2, 3 the scaling factors of the gather
operation, the scatter operation, and phase i, i = 1, 2, 3 of our algorithm, respectively.
Then a simple model for the time it takes to complete our partitioning algorithm
without recursion is

T1 = (ρ1 + ρ3)LNkmax
+ (γ + ρ2 + σ)LNp, (7.1)



12 T. M. AUSTIN, M. BERNDT, J. D. MOULTON

If we use one level of recursion, where we have MP groups and the maximum number
of processors in a single group is Mkmax

, then the complexity of the algorithm is

T2 = (ρ1 + ρ3)LNkmax
+ (γ + ρ1 + ρ3 + σ)LMkmax

+ (γ + ρ2 + σ)LMP (7.2)

If we use multiple levels of recursion, where we have M
(`)
P groups of processors on

level ` and the maximum number of processors in a single group on level ` is M `
kmax

,
then the complexity of the algorithm is

T` = (ρ1 + ρ3)LNkmax + (γ + ρ1 + ρ3 + σ)
∑̀
i=2

LM
(`)
kmax

+ (γ + ρ2 + σ)LM
(`)
P (7.3)

Now assume a constant coarsening ratio, such that M
(`)
kmax

is the same for all levels
and the number of processors in each group is the same for all groups on all levels.
We are interested in the case where the algorithm uses as many levels of recursion as
possible, that number is `max = logMkmax

NP . Then (7.3) becomes

T`max
= (ρ1 +ρ3)LNkmax

+(γ+ρ1 +ρ3 +σ)(`max−1)LMkmax
+(γ+ρ2 +σ)LM

(`max)
P .

(7.4)
Equation (7.4) suggests that the recursive algorithm should scale logarithmically with
the number of processors. Note that M

(`max)
P ≤Mkmax is small and not dependent on

NP . Note that the constants in (7.4) must be measured experimentally to determine
the coarsening strategy for a given parallel computer.

In the context of line relaxation in a multilevel scheme, the length of lines is halved
on each coarser level. This will only affect the first term in (7.4), since Nkmax

will be
smaller on coarser multigrid levels. The other two terms in (7.4) do not depend on
the length of a line.

8. Conclusions. We have introduced a new memory efficient partitioning al-
gorithm for the solution of tridiagonal linear systems of equations. Based on this
algorithm we proposed a recursive version of this algorithm that we expect to exhibit
only logarithmic complexity with respect to the number of processors. This algorithm
is different from other tridiagonal solvers with logarithmic complexity with respect to
the number of processors, in that it can be tuned for a given parallel computer. We
will explore this recursive algorithm in a forthcoming paper.

REFERENCES

[1] P. Amodio and L. Brugano, Parallel factorizations and parallel solvers for tridiagonal linear-
systems, Linear Algebra and its Applications, 172 (1992), pp. 347 – 364.

[2] P. Amodio, L. Brugano, and T. Politi, Parallel factorizations for tridiagonal matrices,
SIAM J. Numer. Anal., 30 (1993), pp. 813 – 823.

[3] T. M. Austin, M. Berndt, B. K. Bergen, J. E. Dendy, and J. D. Moulton, Parallel,
scalable, and robust multigrid on structured grids, tech. report, Los Alamos National Lab-
oratory, LA-UR-03-9167, 2003.

[4] S. Bondeli, Divide and conquer: a parallel algorithm for the solution of a tridiagonal linear
system of equations, Parallel Computing, 17 (1991), pp. 419–434.

[5] P. N. Brown, R. D. Falgout, and J. E. Jones, Semicoarsening multigrid on distributed
memory machines, SIAM J. Sci. Stat. Comput., 21 (2000), pp. 1823–1834.

[6] J. E. Dendy, Black-box multigrid, Journal of Computational Physics, 48 (1982), pp. 366 – 386.
[7] , Black-box multigrid for nonsymmetric problems, Applied Mathematics and Computa-

tion, 13 (1983), pp. 261 – 283.



A MEMORY EFFICIENT PARALLEL TRIDIAGONAL SOLVER 13

[8] J. E. Dendy, Two multigrid methods for three-dimensional problems with discontinuous and
anisotropic coefficients., SIAM J. Sci. Stat. Comput., 8 (1987), pp. 673–685.

[9] R. W. Hockney, A fast direct solution of poissons equation using fourier analysis, J. ACM,
12 (1965), pp. 95–113.

[10] J. Hofhaus and E. F. V. de Velde, Alternating-direction line-relaxation methods on multi-
computers, SIAM J. Sci. Comput., 17 (1996), pp. 454–478.

[11] A. Povitzky, Parallelization of pipelined algorithms for sets of linear banded systems, J. Par.
Distr. Comput., 59 (1999), pp. 68–97.

[12] S. Schaffer, A semi-coarsening multigrid method for elliptic partial differential equations with
highly discontinuous and anisotropic coefficients, SIAM J. Sci. Stat. Comput., 20 (1998),
pp. 228–242.

[13] H. S. Stone, An efficient parallel algorithm for the solution of a tridiagonal linear system of
equations, J. ACM, 20 (1973), pp. 27–38.

[14] X.-H. Sun, H. Z. Sun, and L. M. Ni, Parallel algorithms for solution of tridiagonal systems
on multicomputers, in Proceedings of the 3rd international conference on Supercomputing,
ACM Press New York, NY, USA, 1986, pp. 303–312.

[15] L. H. Thomas, Elliptic problems in linear difference equations over a network, Watson Sci.
Comput. Lab. Rept., Columbia University, New York, (1949).

[16] C. H. Walshaw, Diagonal dominance in the parallel partition method for tridiagonal systems,
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 1086–1099.

[17] H. H. Wang, A parallel method for tridiagonal equations, ACM Trans. Math. Software, 7
(1981), pp. 170–183.

[18] P. Yalamov and V. Pavlov, On the stability of a partitioning algorithm for tridiagonal sys-
tems., SIAM Journal on Matrix Analysis and Applications, 20 (1998), pp. 159 – 81.


